PROBABILITAS HUMAN ERROR DAN RELIABILITY PADA AREA KERJA MESIN BOILER

Laili Maftuhatul Uyun ⁽¹⁾, Rina Sandora ⁽²⁾, Vivin Setiani ⁽³⁾

- ¹ Jurusan Teknik Permesinan Kapal. Program Studi Teknik Keselamatan dan Kesehatan Kerja, Politeknik Perkapalan Negeri Surabaya, Jalan Teknik Kimia ITS, 60111
- ^{2,3} Jurusan Teknik Permesinan Kapal, Politeknik Perkapalan Negeri Surabaya, Jalan Teknik Kimia ITS, 60111

Email: Lailimaftuhatuluyun21@gmail.com

Abstract

Boiler is an equipment that the function is to convert water into vapor at a certain temperature and pressure. Activity in milling season of 2017 there are 160.99 stop hours, mostly due to engine failure and there are 5 accidents that occur, 4 of them are caused by human error. This research identifies possible types of errors in boiler maintenance activities during operation, knows the probability of human error, identifies the failure of the boiler, and recommendation for the sugar factory. The purpose of this study is to analyze the risk that occurs from human error probability and component reliability. HEP calculation uses HEART (Human Error Assessment and Reduction Technique) method using SOP and IK data.. The results of this study indicate that high HEP in boiler treatment are activities of treatment on the water side that is equal to 0.634 and treatment on the fire side of 0.624. While components that have high realibility is conveyor and FDF (force draft fan) of 81%. From this study also known the probability of blasting kettle is 0,155 times/year.

 $Keywords:\ Boiler,\ Failure,,\ Human\ Error\ Probability, Realibility,\ Risk$

Abstrak

Boiler merupakan peralatan yang berfungsi mengubah air menjadi uap pada suhu dan tekanan tertentu. Pada musim giling tahun 2017 terdapat 160,99 jam berhenti, sebagian besar diakibatkan kerusakan mesin dan terdapat 5 kecelakaan yang terjadi, 4 diantaranya diakibatkan oleh *human error*. Penelitian ini mengidentifikasi jenis kesalahan yang mungkin dilakukan dalam aktivitas pemeliharaan ketel selama beroperasi, mengetahui probabilitas *human error*, mengidentifikasi kegagalan pada boiler, serta memberikan rekomendasi pada pabrik gula. Tujuan penelitian adalah menganalisis risiko yang terjadi dari nilai *human error probability* dan *reliability* komponen. Perhitungan HEP menggunakan metode HEART(*Human Error Assesment and Reduction Technique*) dengan memanfaatkan data SOP dan IK. Hasil penelitian ini menunjukkan bahwa HEP yang tinggi dalam perawatan boiler adalah perawatan pada sisi air yaitu sebesar 0,634 dan perawatan pada sisi api sebesar 0,624. Sedangkan komponen yang memiliki *realibility* tinggi adalah conveyor dan FDF (*force draft fan*) sebesar 81%. Dari penelitian ini juga dapat diketahui kemungkinan terjadinya peledakan ketel sebesar 0,155 kali/tahun.

Kata Kunci: Boiler, Human Error Probability, Kegagalan, Reliability, Risiko

PENDAHULUAN

Unit boiler adalah peralatan yang berfungsi mengubah air menjadi uap pada suhu dan tekanan tertentu. Aktivitas pada kegiatan boiler juga mengandung potensi bahaya. Salah satu penyebab bahaya pada boiler adalah faktor manusia dan kegagalan instrumen (Da Costa, N, Musyafa, & Soeprijanto, 2017). Data pada perusahaan menunjukan bahwa pada musim giling tahun 2017 terdapat 160,99 jam berhenti, sebagian besar diakibatkan karena kerusakan mesin yang ada. Serta terdapat 5 kecelakaan yang terjadi pada musim giling tahun 2017, 4 diantaranya adalah kecelakaan yang diakibatkan oleh faktor *human error*.

Kecelakaan yang terjadi pada pabrik gula ini menimbulkan kerugian bagi perusahaan yaitu hilangnya jam kerja, terhentinya proses produksi hingga korban luka. Analisis bahaya dan analisis risiko dapat menjadi langkah pencegahan untuk mengurangi terjadinya kecelakaan kerja. Hal ini sesuai dengan yang tertera pada Undang Undang Keselamatan Kerja no.1 tahun 1970 pasal 3 ayat 1 point (a) yaitu mengenai syarat-syarat keselamatan untuk mencegah dan mengurangi kecelakaan. Oleh karena itu, perlu dilakukannya penilitian untuk menganalisis potensi *human error* dan ketidakhandalan komponen mesin yang dapat menyebabkan terjadinya kecelakaan.

METODE PENELITIAN

Human Error

Definisi *human error* sendiri menurut beberapa sumber yang telah dirangkum pada buku sistem perawatan terpadu karangan Nachrul Ansori dan M.Imron Mustajib adalah sebagai salah satu

keputusan/ tindakan yang mengurangi atau potensial untuk mengurangi efektivitas, keamanan, atau performansi suatu sistem. Sedangkan klasifikasi *human error* adalah:

Kesalahan dalam mengawasi (error of comission): melakukan langkah yang benar pada item yang salah, melakukan langkah yang salah pada item yang benar dan melakukan langkah yang benar pada waktu yang tidak tepat.

Kesalahan dengan menghilangkan (error of omission): melewatkan atau melompati langkah yang penting dan kekurangan untuk berkomunikasi dengan pekerja.

Kesalahan tugas kognitif: membentuk diagnosa yang tidak tepat (salah memproses data, cacat logis, menafsirkan infomasi input dengan tidak sesuai) serta membuat keputusan yang tidak mendukung dengan informasi yang tidak tersedia.

Keandalan (Reliability)

Keandalan merupakan peluang suatu sistem atau komponen berjalan dengan fungsi yang diharapkan selama periode waktu tertentu dengan kondisi operasi tertentu (Ebeling, 1997). Keandalan juga didefinisian sebagai ukuran terhadap kemampuan komponen atau sistem tersebut untuk melakukan fungsinya pada saat dibutuhkan pada waktu dan kondisi tertentu. Dari definisi tersebut didapatkan bahwa keandalan suatu sistem akan berpengaruh terhadap aktivitas proses pada sistem, bagaimanakah efisiensi serta hasil produksi pada *plant*.

Distribusi Kegagalan

Distribusi Eksponensial

Distribusi ekponensial banyak digunakan untuk kerusakan peralatan yang disebabkan kerusakan komponen penyusun alat tersebut. Persamaan yang digunakan pada distribusi ini adalah sebagai berikut:

$$MTTF = 1/\lambda \tag{2.1}$$

Dimana:

 $\lambda = failure \ rate$

Distribusi Weibull

Distribusi weibull sering digunakan dalam teknik perhitungan keandalan Dalam distribusi ini, terdapat dua parameter yaitu parameter (β) dan parameter (η). Persamaan yang digunakan pada distribusi ini adalah sebagai berikut :

Weibull 2

$$MTTF = \eta \Gamma \left(1 + \frac{1}{\beta}\right) \tag{2.2}$$

Weibull 3

$$MTTF = \gamma + \eta \Gamma \left(1 + \frac{1}{\beta}\right) \tag{2.3}$$

Distribusi Lognormal

Time to failure (t) dari suatu komponen diasumsikan memiliki distribusi lognormal apabila y=ln(t), mengikuti distribusi normal dengan rata – rata t0 dan variansinya adalah s. Persamaan yang digunakan pada distribusi ini adalah sebagai berikut :

$$MTTF = Exp\left(\mu + \frac{\sigma^2}{2}\right) \tag{2.4}$$

Dimana:

 $\mu = mean$

σ = standar deviasi

Distribusi Normal

Distribusi normal mempunyai laju kerusakan yang naik sejak bertambahnya umur alat, yang berarti probabilitas kerusakan alat atau komponen naik sesuai dengan bertambahnya umur komponen tersebut. Distribusi normal mempunyai dua parameter, yaitu rata-rata dan standar deviasi. Adapun fungsi-fungsi distribusi normal dinyatakan sebagai berikut :

 $MTTF = \mu \tag{2.12}$

HASIL DAN PEMBAHASAN

Perhitungan MTTR, MTTF, MTBF, dan Failure Rat

MTTF adalah rata-rata waktu komponen *up-time* a kurun waktu tertentu, sedangkan MTTR adalah rata-rata waktu perbaikan komponen atau *downtime* yang dilakukan selama kurun waktu tertentu. MTBF adalah rata-rata waktu *up-time* dan *downtime* dalam kurun waktu tertentu. Ketika menghitung suatu nilai MTTF maupun MTTR hal pertama yang dilakukan adalah melakukan perhitungan TTR dan TTF berdasarkan tanggal dan jam waktu *up-time* serta *downtime* kemudian dilakukan uji distribusi dengan software weilbul 6++ sehingga diperoleh jenis distribusi dengan masing-masing parameter yang dimiliki, kemudian dapat dilakukan perhitungan MTTF dan MTTR sesuai dengan rumus distribusi masing-masing.

Tabel 1
MTTF, MTTR, MTBF, dan *Failure Rate* Komponen Boiler

No	Equipment	MTTF (jam)	MTTR (jam)	MTBF (jam)	$\Lambda(Failure\ Rate)$
1	IDF (In Draft Fan)	4209,302	2,22	4211,522	0,0002374
2	Conveyor	18120,670	0,939	18121,609	0,00005
3	Elektro motor	5476,068	1,586	5477,654	0,00018
4	FDF(Force Draft Fan)	2,22	1,823	4,043	0,247
5	Filter pompa hisap	111110,141	3,248	11113,390	0,000090
6	Safety valce	12747,9877	1,832	12748,,832	0,000078
7	Blowdown Valve	9780,67	5,2376	10213,1876	0,000098
8	Fire grate	9040,65	2,537	9043,187	0,00011
9	Pressure Gauge	6021,42	2,81	6024,23	0,00017
10	Pipa air	15930,65	18,86	15949,51	0,00006
11	Roster	7901,754	6,16	7907,914	0,0012

Sumber: Hasil penelitian, 2018

Perhitungan Probability dan Reliability

Perhitungan probabilitas dimulai dengan memasukan rumus *failure rate* dari masing masing komponen dalam formula *reliability*, untuk *exposure time* komponen diambil dari rata-rata waktu kerja mesin tiap tahunnya. Pada mesin boiler *exposure time* atau (t) yang akan digunakan adalah 4288,06 jam.

Tabel 2 Hasil *Reliability* dan *Probability* Komponen Boiler

No	Equipment	Reliability	Probability	
1	IDF (In Draft Fan)	0,36	0,64	
2	Conveyor	0,81	0,19	
3	Elektro motor	0,23	0,77	
4	FDF(Force Dra	0,81	0,19	
5	Filter Pompa hisap	0,68	0,32	
6	Safety valce	0,71	0,29	
7	Blowdown Valve	0,66	0,34	
8	Fire grate	0,62	0,38	
9	Pressure Gauge	0,48	0,52	
10	Pipa air	0,77	0,23	

Sumber: Hasil penelitian, 2018

Identifikasi Error dan Klasifikasinya

Error yang diidentifikasi merupakan *human error* jenis *operating error* yang dapat menyebabkan kecelakaan kerja. *Human error* jenis *operating error* dipilih karena *human error* jenis ini terfokus pada kesalahan yang berkaitan dengan personal operasi dan salah satu penyebabnya dipengaruhi oleh instruksi kerja yang tersedia. Sehingga sesuai dengan tujuan penelitian ini, yaitu menganalisis potensi dan nilai probabilitas *human error* yang dilakukan operator untuk melaksanakan SOP dan instruksi kerja. Hasil identifikasi error menggunakan metode HEART dapat dilihat pada Tabel 3

Tabel 3

Error Producing Condition pada Kegiatan Pemeliharaan Boiler pada Keadaan Normal

Task & Possible Error	EPC (Error Producing Conditions)	Total Effect	HEP
Task: 1.Pencatatan data Operasi	31. Tingkat kedisiplinan yang rendah		0,025
Possible Error: 1. Pencatatan data tidak tepat waktu. 2. Data yang dicatat salah. 3. Pencatatan data yang kurang teliti.	36. Melewatkan kegiatan karena intervensi dari orang lain.	X0,3	
<i>Task</i> : 2. Menindaklanjuti Penyimpangan (<i>deviasi</i>) dengan segera	2.Kurangnya waktu yang tersedia untuk mendeteksi dan mengoreksi kesalahan.	X11	0,7388
Possible Error:	16. Kualitas informasi	X3	

	EPC (Error Producing	Total	HEP
Task & Possible Error	Conditions)	Totai Effect	HEP
1. Langkah yang	Conditions)	Ljjeci	
dilakukan menimbulkan	dan interaksi per orang.		
risiko kecelakaan	dun interansi per orang.		
2.Operator tidak	21. Adanya dorongan	X2	
mengerti apa yang	untuk menggunakan		
dikerjakan.	prosedur lain yang lebih		
3.Operator tidak	berbahaya.		
mengerti penyimpangan	3		
yang terjadi.	24.Kebutuhan untuk	X1,6	
	membuat suatu		
	keputusan yang di luar		
	kapasitas atau		
	pengalaman dari		
	operator.		
	6.Ketidaksesuaian		
<i>Task</i> : 3. Perawatan	antara	X8	0,7820
operasi pada sisi air.	suatu model operator		
	pada umumnya dengan		
Possible Error:	apa yang dibayangkan		
1.Pengoperasian	perancang.		
1 . 1			
chemical injection	21 Adanya darangan	X1,06	
dengan dosis yang tidak	21. Adanya dorongan	Λ1,00	
dengan dosis yang tidak	menggunakan prosedur		
sesuai.	mengganakan prosecur		
	lain yang lebih		
2.Pengolahan air pengisi			
	berbahaya		
yang salah.			
3.Pengendalian	31. Tingkat kedisiplinan	X1,2	
penyimpangan kualitas	yang rendah		
air yang salah.			
4.Pengendalian tekanan			
uap dan temperatur uap			
yang tidak sesuai.			
5.Terjadi carry over.			
T. 1. 1.D.	6.Ketidaksesuaian	W.O.	0.7200
Task: 4.Perawatan	antara	X.8	0.7280
operasi pada sisi api	suatu model operator		
Possible Error: 1.Tidak	pada umumnya dengan apa yang dibayangkan		
dilakukan perawatan dan pengawasan secara	perancang. 18. Adanya Konflik	X2,5	
berkala.	antara tujuan jangka	$\Lambda 2,3$	
2.Pengendalian kondisi	pendek dan jangka		
pembakaran dan	panjang.		
1	LJ 2-		
pengatur tarikan tidak			
	21. Adanya dorongan	X1,06	
sesuai.	menggunakan prosedur		

Proceeding 2 nd Conference On Safety Eng	ISSN No. 2581 – 1770				
Program Studi D4 Teknik Keselamatan da	Total	HEP			
Task & Possible Error	Conditions)	Effect			
pengawasan mutu bahan	lain yang lebih	X0,3	0,0200		
bakar yang tidak sesuai.	berbahaya				
4.Penghembusan abu yang tidak tepat waktu. dan pengawasan secara berkala.	perancang.				
2.Tidak dilakukan evaluasi terhadap peralatan bantu yang ada. 3.Tidak dilakukan kalibrasi pada peralatan	17. Sedikit atau tidak adanya kebebasan dalam pemeriksaan atau pengujian pada output/keluaran	X0,5			
bantu.	31. Tingkat kedisiplinan yang rendah	X0,4			
Task: 6. Selalu waspada terjadinya kebocoran uap, kebocoran pipa, super heater, dan kelainan pada ketel	6.Ketidaksesuaian antara suatu model operator pada umumnya dengan apa yang dibayangkan perancang.	X8	0,0990		
Possible Error: 1.Tidak dilakukan perawatan dan pengawasan secara berkala. 2.Kebocoran pipa yang tidak dapat dideteksi.	31. Tingkat kedisiplinan yang rendah	X1,2			

Sumber: Hasil penelitian, 2018

KESIMPULAN

Kegagalan yang terjadi pada komponen boiler adalah IDF memiliki kemungkinan kegagalan 64%, conveyor memiliki kemungkinan kegagalan 19%, elektro motor memiliki kemungkinan kegagalan 77%, FDF memiliki kemungkinan kegagalan 19%, filter pompa hisap memiliki kemungkinan kegagalan 32%, safety valve memiliki kemungkinan kegagalan 29%, blowdown valve memiliki kemungkinan kegagalan 34%, firegrate memiliki kemungkinan kegagalan 38%, dan pressure gauge memiliki kemungkinan kegagalan 52%.

Probabilitas human error yang dilakukan oleh pekerja yang berada pada area kerja mesin boiler dalam aktivitas pemeliharaan boiler selama beroperasi adalah pada saat kegiatan pencatatan data operasi memiliki nilai HEP adalah 0,025; menindaklanjuti penyimpangan (deviasi) dengan segera memiliki nilai HEP adalah 0,141; perawatan operasi pada sisi air memiliki nilai HEP adalah 0,634; perawatan pada sisi api memuliki nilai HEP 0,624; perawatan operasi pada setiap peralatan bantu memiliki nilai HEP 0,002; dan selalu waspada terjadinya kebocoran uap, kebocoran pipa, super heater, dan kelainan pada ketel memiliki nilai HEP 0,099.

DAFTAR PUSTAKA

Ansori,	N.,	&	Mustajib,	M.	I.	(2013).	Sistem	Perawatan	Terpadu
	(Intergr	ated	Maintanance	System).					
Yogyak	arta: Gra	ha Ilmu.							
Bell, J	••	&	Holroyd,J.	(2009).	Review	of	Human	Reliability	Assesment
	Method.	S.	United Kingdon	m:					
Health&	Safety I	aborators							

Bisen, V., & Priya. (2010). *Industrial Psychology*. New Delhi: New Age International.

Crowl, A. D., & Louvar, J. F. (2001). Chemical Process Safety Second Edition. New jersey: Prentice Hall PTR.

- Ebeling, C. E. (1997). An Introduction Realibility and Maintainability Engineering. Singapore: Me Graw Hill Book Co.
- Ericson, A. C. (2005). *Hazard Analysis Techniques for System Safety*. Virginia: A John Wiley & Sons, inc. Safitri, M. D., Astriaty, A. R., & Rizani, C. N. (2015). Human Reliability Assessment dengan Metode HEART pada Operator Stasiun Shroud PT.X. *Jurnal Rekayasa Sistem Industri Vol.4*, 3.
- Vasconcelos, Vanderley de; da Silva, Eliane Magalhae Pereira; da Costa, Antonio Carlos Lopes; dos Reis, Sergio Carneiro. (2009). Safety, Reliability, Risk Management and Human Factors: an Intergrated Engineering Approach Applied to Nuclear Facilities. *INAC*. Rio de Janeiro, Brazil: ABEN.

ISSN No. 2581 – 1770

(halaman ini sengaja dikosongkan)