Analisis dan Evaluasi Kinerja *Heat Exchanger* Tipe *Shell and Tube* – PLTSA Surakarta

Ustwatunisa Agustin, George Endri Kusuma², Tarikh Azis Ramadani³

PT. Inti Karya Persada Teknik, Jakarta, Indonesia¹

Program studi Teknik Permesinan Kapal, Jurusan Permesinan Kapal, Politeknik Perkapalan Negeri Surabaya, Surabaya,

Indonesia²

Program studi Teknik Perpipaan, Jurusan Permesinan Kapal, Politeknik Perkapalan Negeri Surabaya, Surabaya, Indonesia³

Email: ustwatunisaagustin@student.ppns.ac.id^{1*}; kusuma.george@ppns.ac.id²; tarikh@ppns.ac.id³;

Abstract – The reduction of syngas temperature at PLTSa Surakarta is carried out with the help of a shell and tube type heat exchanger. Based on the mechanical properties of the working design, the maximum output temperature of the syngas is 20°C. During commissioning, the actual result of syngas temperature does not reach the maximum output temperature specification of the heat exchanger. This research analysis heat exchanger work efficiency was carried out by varying the flow rate of syngas and cooled water. The analysis shows that the flow rate affects the working performance of the heat exchanger in each parameter of Reynold, Prandtl, and Nusselt values. The most effective flow rate in reducing temperature is 1500 Nm3/hr for syngas and 23 m3/hr for cooling water flow rate. With a heat exchanger energy efficiency of 92% at a cooling capacity of 137.0556 kW and Tout syngas 27.75 °C.

Keyword: energy, flow rate, heat exchanger, shell and tube

Nomenclature

- **A** Luas permukaan, m²
- C_p Spesific heat capacity, J/kg.C
- **D**₀ *Inside diameter*, m
- **D**_i *Outside diameter*, m
- **F**_c Fouling factor cold side, W/m²C
- **F**_h Fouling factor hot side, W/m^2C
- K Konduktivitas termal material, W/mK
- **LMTD** Log mean temperature difference, C
- ma Laju alir massa air pendingin, kg/s
- ms Laju alir massa *syngas*, kg/s
- Nu Nusselt Number, unitless
- Pr Prandtl Number, unitless
- **Q** laju aliran kalor, W
- **R**_e *Reynold Number*, unitless
- T_a Temperatur air Pendingin, C
- T_s Temperatur fluida syngas pada tube, C
- Ur Required overall heat transfer coefficient, W/m²K
- η_s Efisiensi dari sistem, %
- μ Viskositas fluida, kg/m.s
- ρ_a Massa jenis fluida air pendingin, kg/m³
- **ρ**_s Massa jenis fluida *syngas*, kg/m³

1. PENDAHULUAN

Salah satu Pembangkit Listrik Tenaga Sampah (PLTSa) yang berlokasi di Surakarta terdapat cooling gas system menggunakan *heat exchanger* tipe *shell and tube*. Pada *commissioning*, temperatur *syngas* keluaran tidak mencapai minimal *requirement* dan menyebabkan efisiensi mesin menurun.

2. METODOLOGI

2.1. Analisis Reynold, Prandlt, Nusselt Number Setiap Sisi HE

Analisis Re, Pr, dan Nu didapatkan dari hasil simulasi menggunakan *software* pemodelan HE. Persamaan yang digunakan sebagai berikut.

a. Reynold Number

Reynold Number (Re) atau bilangan reynold adalah suatu bilangan tanpa dimensi yang menganalisis gaya inersia Fluida. Jenis aliran Fluida dan gaya gesekan yang terjadi dengan permukaannya akan menentukan Bilangan Reynold Cengel,2004

$$Re = \frac{G_{Ch} \times D_h}{\mu} \tag{1}$$

b. Prandtl Number

Bilangan Pr menunjukkan rasio antara viskositas kinematik fluida dengan difusi thermal Cengel,2004 $Pr = \frac{c_p \times \mu}{2}$ (2)

$$Pr = \frac{c_p - r_p}{k}$$
c. Nusselt Number
(2)

Nilai Nu dapat dihitung dengan persamaan berikut

$$Nu = 3.66 + \frac{0.068 \, x \, Re \, x \, Pr \, x \frac{D}{L}}{1 + 0.04 \, (Re \, x \, Pr \, x \frac{D}{L})^{2/3}}$$
(3)

$$Nu = 0.023 x Re^{4/5} x Pr^{1/3}$$
(4)
2. Penentuan Overall Heat Transfer

2.2. Penentuan Overall Heat Transfer Coefficient

Penentuan Overall Heat Transfer Coefficient dapat ditentukan dengan persamaan berikut :

$$\frac{1}{U} = \frac{1}{h_h} + \frac{1}{h_c} + \frac{1}{k_2} + \frac{1}{F_c} + \frac{1}{F_h}$$
(5)

penentuan luas area permukaan area *heat transfer* dapat ditentukan dengan persamaan berikut.

$$A_i = \frac{Q}{U \times LMTD} \tag{6}$$

Selisih antara *temperature* pada *heat exchanger* pada sisi inside dan outside, *LMTD*, dapat ditentukan dengan persamaan berikut.

$$LMTD = \frac{(Th_{in} - TC_{out}) - (Th_{out} - TC_{in})}{(Th_{out} - TC_{in})}$$
(7)

2.3. Penentuan Kinerja Heat Exchanger

Penentuan *concern* konservasi energi di *heat exchanger* tipe *shell and tube*, dapat diklasifikasikan menjadi dua bagian: transportasi energi internal dan transformasi energi eksternal. Untuk *heat exchanger* tipe *shell and tube*, aliran panas dan dingin aliran terlibat dalam mencapai transportasi energi didorong oleh perbedaan suhu internal. Berdasarkan hukum kedua termodinamika (Naphon, 2006).

1.) Perhitungan efisiensi energi *heat exchanger* menggunakan persamaan berikut:

$$\eta = \frac{\dot{E}cw,out - Ecw,in}{Es,out - Es,in} \tag{11}$$

2.4. Penentuan Efisiensi Energi *Heat* Exchanger

Kehilangan panas dan penurunan tekanan yang *irreversibel* terjadi untuk perbedaan suhu dan hambatan aliran di *heat exchanger* tipe *shell and tube* didefinisikan sebagai entropi (Ogulata & Doba, 1998). Entropi tanpa dimensi nomor memberikan pandangan terkait keberlanjutan dan efisiensi untuk *heat exchanger* tipe *shelll and tube*. Hal tersebut dapat digunakan baik dalam tahap desain maupun evaluasi. Angka entropi yang lebih rendah selama operasi biasanya menandakan efisiensi energi yang lebih tinggi, yang merupakan isu penting untuk konservasi energi

3. HASIL DAN PEMBAHASAN

Pada penelitian ini, analisis kinerja *heat* exchanger menggunakan 81 pemodelan dengan 9 variasi laju alir syngas dan 9 variasi laju alir air pendingin.

Berdasarkan persamaan 1 didapatkan hasil *Reynold Number* pada sisi *shell* mengalami peningkatan ketika laju alir air pendingin meningkat, dapat dilihat pada tabel sebagai berikut.

Reynold Number Shell Side (Re)		
15	1498,19	
16	1583,32	
17	1670,84	
18	1755,61	
19	1837,38	
20	1920,93	
21	2004,45	
22	2087,79	
23	2170.96	

Berdasarkan persamaan 1 didapatkan hasil Reynold Number pada sisi shell mengalami

peningkatan ketika laju alir air pendingin meningkat, dapat dilihat pada tabel sebagai berikut.

Reynold Number Tube Side		
(Re)		
1500	2493,38	
1600	2659,04	
1700	2824,68	
1800	2990,33	
1900	3157,71	
2000	3323,36	
2100	3489,01	
2200	3656,38	
2300	3822.04	

Berdasarkan tabel diatas, semakin tinggi laju alir fluida, maka semakin tinggi juga nilai Re yang dihasilkan. Baik pada sisi *shell* maupun *tube* HE.

Berdasarkan persamaan 2 didapatkan hasil *Prandlt Number* pada sisi *shell* mengalami peningkatan ketika laju alir air pendingin meningkat, dapat dilihat pada tabel sebagai berikut.

Prandlt Number Shell Side (Pr)	
15	8,36883
16	8,41853
17	8,46297
18	8,50221
19	8,53746
20	8,56924
21	8,59808
22	8,62434
23	8,64841

Berdasarkan persamaan 2 didapatkan hasil *Prandlt Number* pada sisi *tube* mengalami peningkatan ketika laju alir *syngas* meningkat, dapat dilihat pada tabel sebagai berikut.

Prandlt Number Tube Side (Pr)		
1500	0,74251	
1600	0,74251	
1700	0,74251	
1800	0,74251	
1900	0,74251	
2000	0,74251	
2100	0,74251	
2200	0,74251	
2300	0,74251	

Berdasarkan persamaan 3 dan 4 didapatkan hasil *Nusselt Number* pada sisi *shell* mengalami peningkatan ketika laju alir air pendingin meningkat, dapat dilihat pada tabel sebagai berikut.

Nusselt Number Shell Side (Nu)	
15	3,66291
16	3,66274

Nusselt Number Shell Side (Nu)	
17	3,66259
18	3,66245
19	3,66233
20	3,66222
21	3,66212
22	3,66203
23	3,66195

Berdasarkan persamaan 3 dan 4 didapatkan hasil *Nusselt Number* pada sisi *tube* mengalami peningkatan ketika laju alir *syngas* meningkat, dapat dilihat pada tabel sebagai berikut.

Prandlt Number Tube Side		
(Nu)		
1500	44004062241	
1600	56916523593	
1700	72479619343	
1800	91036458694	
1900	1,13195E+11	
2000	1,38883E+11	
2100	1,68713E+11	
2200	2,03491E+11	
2300	2,42952E+11	

Berdasarkan persamaan 5 dan 6 didapatkan hasil U_a pada *heat exchanger* secara keseluruhan meningkat berbanding lurus dengan peningkatan *flow rate syngas*, dapat dilihat pada gambar berikut.

Berdasarkan persamaan 5 dan 6 didapatkan hasil U_r pada *heat exchanger* secara keseluruhan mengalami penurunan berbanding terbalik dengan peningkatan *flow rate* air pendingin, dapat dilihat pada gambar berikut.

3.1. Hasil Kinerja Heat Exchanger

Untuk perhitungan kinerja *heat exchanger* di setiap parameter kondisi *flow rate* fluida *syngas*

dan air pendingin menggunakan simulasi *software* pemodelan, didapatkan hasil sebagai berikut.

Berdasarkan gambar, nilai kinerja *heat* exchanger semakin meningkat dipengaruhi *flow* rate dari air pendingin. Kinerja paling efektif dan mendekati desain aktual adalah **137.7 kW**.

3.2. Perhitungan Efisiensi Energy

Efisiensi energi dari *heat exchanger* dapat ditentukan dengan menggunakan persamaan 11 dan didapatkan hasil sebesar **92%** dari aktual desain dengan *cooling capacity* sebesar **137 kW**.

4. KESIMPULAN

Dari hasil penelitian didapatkan ini kesimpulan bahwa variasi flow rate syngas dan air pendingin mempengaruhi performa kerja dari heat exchanger pada setiap parameter Re, Nu, Pr, U, dan Tout dalam setiap kondisi flow rate syngas dan air pendingin. Variasi flow rate syngas dan air pendingin mempengaruhi kinerja heat exchanger. Heat exchanger dari mengalami under design pada kondisi kondisi flow rate syngas sebesar 1500 Nm³/hr dan flow rate air 23 m³/hr. sehingga efisiensi energi yang dihasilkan adalah sebesar 92,6% dengan cooling capacity sebebsar 137 kW.

5. DAFTAR PUSTAKA

- [1] Cengel, Y. A. (2004). Heat Transfer a Practical Approach. 4(9), 874. http://dx.doi.org/10.1007/978-3-642-20279-7_5
- [2] Haar, L., Gallagher, J. S., & Kell., G. S. (1984). NBS/NRC steam tables: thermodynamic and transport properties and computer program for vapor and liquid states of water in SI unit
- [3] Holman, J. P. J. L. (2013). Heat Transfer Tenth edition. In *Journal of Chemical Information and Modeling* (10th ed., Vol. 53, Issue 9). McGraw Hill Book, Co.
- [4] Kakac, S., Liu, H., & Pramuanjaroenkij, A. (1997). *Heat Exchanger: Selection, Rating, and Thermal Design*
- [5] McCabe, W. L. (1993). Unit Operation of Chemical Engineering, 5th edition. McGraw Hill Book, Co.
- [6] Ogulata, R. T., & Doba, F. (1998).

Experiments and entropy generation minimization analysis of a cross-flow heat exchanger. *International Journal of Heat and Mass Transfer*, 41(2), 373– 381. https://doi.org/10.1016/S0017-9310(97)00129-4