Desain Optimasi Rudder Pesawat Komersil

Alaek Nu'man¹, Muhamad Ari², Pranowo Sidi³

¹Program Studi Teknik Desain dan Manufaktur, Jurusan Teknik Permesinan Kapal ^{2,3}Politeknik Perkapalan Negeri Surabaya Surabaya 60111

Email : numan.alaek@gmail.com

Abstrak

Rudder merupakan bagian control surface berengsel pada pesawat yang bergerak sebagai pengendali gerakan sumbu yaw pesawat. Pada perancangan struktur rudder diperlukan desain yang ringan namun kuat menahan beban struktur serta beban luar yang diterima rudder. Maka diperlukan optimasi desain agar memperoleh desain yang diharapkan.

Dalam penelitian ini optimasi desain dilakukan menggunakan metode Taguchi dan analisa perhitungan kekuatan menggunakan metode elemen hingga dengan bantuan perangkat lunak MSC Patran/Nastran. Optimasi desain diaplikasikan pada ketebalan pelat struktur rudder. Setiap bagian dalam struktur rudder dikelompokkan kedalam 13 kelompok atau faktor. Setiap faktor ini memiliki 3 level ketebalan pelat yang berbeda. Dari kombinasi ketebalan pelat ini kemudian dirancang desain eksperimen menggunakan metode taguchi. Selanjutnya desain eksperimen tersebut diaplikasikan menggunakan metode elemen hingga untuk mengetahui tegangan yang terjadi sehingga diketahui margin of safety struktur rudder pada kombinasi level tersebut. Selain itu juga dihitung massa struktur dalam setiap eksperimen yang dilakukan.

Dengan optimasi menggunakan metode Taguchi dan metode elemen hingga dihasilkan kombinasi ketebalan pelat yang optimal dengan margin of safety yang masih diizinkan. Dari hasil optimasi ini didapatkan massa struktur sebesar 17,55715 Kg serta margin of safety 0,898 pada load case 9609 dan 1,93 pada load case 11436. Dengan membandingkan dengan massa struktur rudder sebelum optimasi didapatkan penurunan massa struktur sebesar 29,9 %.

Kata kunci : rudder, metode elemen hingga, Taguchi, optimasi

1. PENDAHULUAN

PT Dirgantara Indonesia (PT.DI) adalah salah satu perusahaan kedirgantaraan di Asia dengan kompetensi inti dalam desain pesawat dan pengembangan, manufaktur struktur pesawat, perakitan pesawat, dan jasa pesawat untuk sipil dan militer besar dan pesawat menengah. Didirikan pada tahun 1976 sebagai perusahaan milik negara di Bandung, Indonesia.

Pesawat Komersil adalah pesawat multi fungsi bermesin dua yang dirancang oleh PT Dirgantara Indonesia (PT DI) dengan tujuan untuk dioperasikan di daerah-daerah terpencil. Pesawat ini terbuat dari logam dan dirancang untuk mengangkut penumpang maupun kargo. Pesawat ini dirancang memiliki volume kabin terbesar di kelasnya.

Dalam perancangan struktur bangunan pesawat terbang memerlukan spesifikasi rangka bangunan yang ringan dan kuat mehanan gaya yang membebaninya. Maka dalam perancangan struktur pesawat diperlukan optimasi desain untuk mereduksi beban struktur desain yang dibuat sehingga akan menghasilkan desain konstrksi yang lebih ringan serta kuat menahan gaya yang terjadi pada struktur.

Pada penelitian ini membahas optimasi desain pada struktur rudder. Rudder merupakan bagian *control surface* berengsel pada pesawat yang bergerak sebagai pengendali gerakan sumbu

yaw pesawat. Desain rudder hasil optimasi akan dibandingkan tingkat reduksi beban struktur dengan desain yang sudah ada.

2. METODOLOGI

Penelitian ini menggunakan metode analisa metode elemen hingga dan metode Taguchi.

Tahap pertama adalah studi literatur. Tahap ini merupakan pengkajian beberapa literatur pendukung yang berkaitan dengan proses pendesainan rudder pesawat berupa pedoman desain standar struktur pesawat terbang, *center line diagram* rudder pesawat Komersil, data foil rudder, dan katalog part standard.

Tahap kedua adalah tahap pemodelan 3D. Dalam tahap pemodelan 3D semua data yang telah dikumpukan pada tahap study literatur akan diterjemahkan menjadi desain struktur rudder berbentuk gamabar 3 dimensi. Pemodelan ini dilakukan dengan bantuan sofware Catia V5 P3 V5-6R2016. Pada software ini struktur rudder dibuat mengikuti bentuk surface yang telah melewati uji anlisa aerodinamika oleh Departrmen Aerodinamika. Struktur rudder ini didesain sesuai dengan standarisasi desain pesawat. Pemodelan 3D.juga akan kembali dilakukan apabila hasil analisa menunjuakan Failure. Pemodelan ini dilakukan untuk merevisi bagian manasaja yang terdapat kritis atau melebihi tegangan yang diizinkan.

Tahap ketiga adalah tahap pemodelan FEM atau metode elemen hingga. Dari hasil pendesainan 3D desain akan dilakukan pemodelan FEM yang mewakili bentuk 3D agar mudah dalam analisa. Pemodelan ini dilakukan pmenggunakan software MSC Patran. Semua desain akan dimodelkan dalam FEM dengan ketentusan sebagai berikut : mesh surface untuk sheet metal, solid mesh untuk benda non sheet metal dan MPC untuk semua bagian connector dan distribusi beban. Mesh akan dimodifikasi sedemikian rupa agar dapat dilakukan analisa menggunakan software MSC Nastran. Selain itu juga dimodelkan gaya-gaya yang diterima oleh rudder guna mengertahui kekuatan struktur rudder ini. Sebelum model FEM masuk kepada tahap Nastran solving model FEM harus benar dan tidak terdapat error sehingga tahap pengghitungan dapat dilakukan. Pemodelan FEM yang error dapat disebabkan oleh banyak faktor seperti sudut elemen melebihi toleransi, pemodelan MPC yang tidak benar node yang bertumpuk, properties elemen tidak terdefinsi, displacement yang salah dan lain-lain.

Tahap keempat adalah Nastran *Solving*. Setelah model FEM siap dalam artian tidak terdapat error pada mesh maka dilanjutkan proses penghitungan menggunakan software MSC. Nastran. Dari hasil analisa dengan *software* ini akan diketahui berapa besar *margin of safety* yang diperoleh serta berapa besar Deformasi yang dihasilkan. Dari hasil ini akan dikatahui pula tingakat kekuatan struktur rudder yang dibuat. Jika *margin of safety* ≤ 0 maka desain dinyatakan *failure*. Desain *failure* tidak boleh terdapat pada desain inisial atau desain sebelum mengalami optimasi. Jika hal ini terjadi maka terdapat kesalahan pemodelan FEM. Untuk menghndari hal ini pemodelan FEM harus dilakukan secara hati-hati dan teliti. Setiap part harus terdefinisi dengan benar. Dari part-part ini disatukan kedalam Sub-Assy sampai ke tahap Final Assy (gabungan keseluruhahan Sub-Assy).

Tahap kelima adalah desain optimasi. Dari hasil analisa FEM yang telah dilakukan kemudian desain akan melalui tahap optimasi agar struktur memiliki massa yang minimum dengan Margin of Safety yang dizinkan. Optimasi dilakukan menggunakan metode Taguchi sebagai dasar pembuatan Design of Experiment (DOF) yang selanjutya dilakukan eksperimen dengan metode elemen hingga dengan bantuan perangkat lunak MSC Patran/Nastran 2012.

Tahap keenam atau tahap terakhir adalah pembuatan laporan akhir. Setelah tahap optimasi dilakukan selanjutnya dilakukan pembuatan laporan akhir untuk melaporkan hasil pengujian yang telah dilakukan yang selanjutnya dapat diambil kesimpulan ketebalan pelat struktur optimal yang

dihasilkan dalam pengujian serta presentase penurunan massa struktur rudder pesawat setelah optimasi.

3. HASIL DAN PEMBAHASAN

3.1 Tahap Pemodelan

Terdapat dua tahap pemodelan yaitu pemodelan CAD (*Computer Aided Design*) dan FEM (*Finite Element Method*).

A. Pemodelan CAD

Model Rudder Pesawat dibuat secara utuh dalam perangkat lunak Catia V5 P3 V5-6R2016. Pemodelan struktur rudder pesawat dimulai dengan perencanaan kurva foil rudder. Foil yang digunakan adalah kurva foil joukowsky. Kurva foil ini ditentukan berdasarkan pertimbangan dari Departemen Aerodinamika yang telah mengalami serangkaian pengujian Aerodinamika sesuai kebutuhan yang telah direncanakan. Dari kurva foil ini akan menentukan bentuk surface struktur rudder pesawat. Setelah bentuk surface rudder ditentukan selanjutnya disusun *center line diagram*. *Center line diagram* merupakan sekumpulan garis sebagai acuan dalam pembuatan struktur yang mengisi bentuk surface rudder pesawat.

B. Pemodelan FEM

Model CAD yang telah didesain selanjutnya dimodelkan kedalam model Element Hingga atau yang biasa dikenal dengan *Finite Element Method* (FEM). Pemodelan FEM dibuat mengunakan perangkat lunak MSC Patran/Nastran 2012. Penyelesaian FEM meliputi tiga tahap, yaitu *pre-processing* yang meliputi pembuatan model, meshig, pemilihan material, pemberian kondisi batas, dan pemberian beban; *solving* yang menerima input dalam bentuk angka dan menghasilkan input dalam bentuk angka; dan *pest-processing* untuk menampilkan parameter analisis yang diinginkan (tegangan dan perpindahan). Berikut ini *pre-processing* yang dilakukan dalam struktur rudder pesawat :

Geometri Struktur Rudder Pesawat

Secara umum geometri struktur rudder pesawat dapat dibedakan menjadi dua, struktur rangka rudder dan struktur kulit rudder. Struktur rangka rudder merupakan struktur yang mendistribusikan gaya yang diterima sruktuk kulit rudder. Sedangkan stuktur kulit rudder merupakan bagian terluar rudder yang menerima gaya langsung dari luar. Strukktur kulit adalah bagian yang menyatukan seluruh bagian rangka menjadi satu.

Pendefinisian Tipe Elemen

Tipe element yang digunakan pada model elemen hingga tergantung dengan perlakuan beda dalam kondisi pembebanan. Secara umum tipe elemen dibedakan menjadi 3 tipe yaitu elemen 1D, 2D, dan 3D.

Element 1D yang digunakan yaitu element Bar dengan tipe properties sebagai 1D Rod. Pada propertis tipe Rod benda didefinisikan sebagai luasan. Pemodelan ini digunakan dalam mendefinisikan flange pada rib dan spar, angle, profil T, dan pelat doubler.

Element 2D yang digunakan adalah Tri dan Quad element dengan tipe properties sebagai 2D Shell. Pada properties jenis ini didefinisikan dengan ketebalan benda. Pemodelan ini digunakan untuk benda berbentuk pelat dengan ketebalan merata. Element 3D yang digunakan adalah Wedge element dengan tipe properties sebagai 3D Solid. Pada properties jenis ini didefinisikan hanya material benda. Pemodelan ini digunakan pada benda dengan bentuk yang kompleks atau memiliki ketebalan tidak merata.

Pendefininisian MPC

MPC (Multi-point constraints) adalah fitur lanjutan yang memungkinkan pengguna "menghubungkan" node dan derajat kebebasan yang berbeda bersamaan dalam analisis. Pada penelitian ini MPC digunakan untuk mendefinisikan koneksi stukrur rudder yang terjadi pada bagian fitting dan penggerak Servo Tab.

Struktur rudder ditopang oleh Rudder Fitting, dan Tork Tube sebagai penggerak rudder. Selain itu juga Servo tab pada bagian atas terkoneksi langsung dengan Vertical tail yang dihubungkan dengan suatu handle sehingga menjadikan gerak Servo Tab atas selalu bergerak berlawanan dengan rudder. Dalam peneitian ini digunakan MPC dengan tipe RBE 2 dan 3 sebagai pendefinisian untuk Rudder Fitting-Lug, Servo Tab Fitting dan komponen Penggerak Servo Tab Bawah yang berupa hyraudlic system.

> Pendefinisian Material Properties

Asumsi yang digunakan pada peneitian ini adalah material yang homogen, isotropic dan linier statik. Seluruh data sifat material yang dibutuhkan pada pemodelan struktur pesawat rudder bersumber dari "Metalic Material and Elements for Aerospace Vehicle Structures".

Analisa dilakukan menggunakan Material AL-2024T3 dengan sifat mekanik sebagai berikut :

Compressive Yield Stress (Fcy)	= 39 ksi	= 26,9 daN/ mm2
Elastic Modulus (E)	= 10.5E+003 ks	i = 7239,5 daN/ mm2
Shear Moduus (G)	= 4.0E+003 ksi	= 2757,9 daN/ mm2
Poisson Ratio (µ)	= 0.33	
Density (p)	= 0.1 lb/in3	= 2,768E-006 kg/mm3

Pendefinisian Kondisi Batas

Kondisi batas rudder terletak pada Rudder Fitting, Tork Tube, dan Handle Servo Tab Atas. Pada Rudder Fitting Struktur Rudder terkoneksi dengan Vertical Tail melalui Fitting dan Lug. Komponen ini bekerja seperti engsel. Sehingga rotasi pada sumbu Z dilepas. Seperti yang ditunjukan pada gambar 4.8 di bawah ini dimana kondisi batas didefinisikan fix pada translation denagn pendefifnisian <0 0 0> dan melepas rotasi pada sumbu z dengan pendefinisian <0 0>.

Pada stuktur Tork Tube, dan Handle Servo Tab Atas terkunci pada translasi maupun rotasi. Pada Tork Tube terkoneksi dengan komponen kontrol yawing pesawat sedangkan pada servo tab atas terhubung dengan handle yang terkoneksi dengan vertical tail. Seperti yang ditunjukan pada gambar 4.9 dibawah ini dimana kondisi batas didefinisikan fix pada translation maupun Rotation denagn pendefifnisian <000.

Pendefinisian Beban

Pendefinisian beban pada Struktur Rudder terdapat dua kondisi beban yang berbeda yaitu load case 9609 dan 11436. Load case adalah beban kasus yang terjadi pada struktur. Kedua penomoran load case tersebut merupakan penomoran beban berdasarkan penomoran yang diberikan perusahaan.

Pada *load case* 9609 rudder pesawat terkena beban angin dengan yawing maneuver 22,21°, kecepatan 125 knot, massa pesawat 4380 kg serta ketinggian 24000 ft diatas permukaan air laut.

Dengan kondisi beban tersebut maka didapatkan resultan gaya sebesar [199,80319; 491,37958; -0,00721] daN.

Pada *load case* 11436 rudder pesawat terkena beban angin dengan yawing maneuver -16.97° kecepatan 143 knot, massa pesawat 4380 kg serta ketinggian 24000 ft diatas permukaan air laut. Dengan kondisi beban tersebut maka didapatkan resultan gaya sebesar [159,44217; -524,6778; 0,00231] daN.

Berikut ini ditribusi beban load case 9609 dan 11436 :

Gambar 2. Pendefinisian beban pada struktur rudder pesawat a. load case 9609 b. load case 11436

3.2 Analisa dan Optimasi Rudder Pesawat

Tahap ini merupakan proses analisa desain hasil pemodelan FEM pada perangkat lunak MSC. Patran/Nastran 2012 yang selanjutnya akan melalui tahap optimasi dengan kombinasi material properties sesuai DOE (Design of Experiment) dari Taguchi menggunakan perangkat lunak Minitab 17. Tahap analisa dan optimasi rudder pesawat dilakukan terhadap desain inisial dan desain eksperimen.

A. Desain Inisial

Desain inisial merupakan analisa stuktur rudder dengan properties material sebelum mengalami optimasi. Dari hasil analisa struktur rudder pesawat desain inisial pada *load case 9609* menghasilkan tegangan dan deformasi maksimum sebagai berikut :

•	Teg	angan maksimum (Fvm)
Pada kondisi limit	: 7,09 daN/mm2	-
Pada kondisi ulitimate	: 7,09 x 1,5 = 10,6 daN/mr	m2
-	Deformasi maksimum	: 3,28 mm
Dengan Compressive Yield	Stress (Fcy) Al 2024-T3 = $26,9$	daN/mm ² , maka <i>margin of safety</i>
:		

 $Ms = \frac{Fcy}{Fvm} - 1 = \frac{26,9}{10,6} - 1 = 1,53$

adalah

Tegangan dan deformasi maksimum struktur rudder pesawat desain inisial pada *load case 9609* dapat dilihat pada gambar 2. dibawah ini :

Gambar 3. Hasil Analisa Desain Inisial Load case 9609 (Hasil Pengujian)

Dari hasil analisa struktur rudder pesawat pesawat desain inisial pada *load case 11436* menghasilkan tegangan dan deformasi maksimum sebagai berikut :

Tegangan maksimum (Fvm)
 Pada kondisi limit : 4,09 daN/mm2
 Pada kondisi ulitimate : 4,09 x 1,5 = 6,14 daN/mm2
 Deformasi Maksimum : 4,81 mm

Dengan *Compressive Yield Stress* (Fcy) Al 2024-T3 = 26,9 daN/mm², maka *margin of safety* adalah :

$$Ms = \frac{Fcy}{Fvm} - 1 = \frac{26,9}{6,14} - 1 = 3,38$$

Tegangan dan deformasi maksimum struktur rudder pesawat pesawat desain inisial pada *load case 11436* dapat dilihat pada gambar 3. dibawah ini :

Gambar 4. Hasil Analisa Desain Inisial Load case 11439 (Hasil Pengujian)

Dengan menggunakan propeties seperti yang telah ditentukan untuk desain inisial menghasilkan massa struktur 25,0481 Kg.

Dari hasil analisa di atas dapat disimpulkan struktur rudder pesawat masih aman pada kondisi *ultimate* dengan menghasilkan *Margin of Safety* terkecil pada *load case* 9609 1,53, sehingga ketebalan pelat struktur rudder persawat masih bisa diturunkan untuk mendapatkan *Massa* struktur yang lebih ringan dengan *Margin of Safety* pada kondisi *ultimate* >0.

B. Design of Experiment (DOE)

Pada tahap ini akan dianalisa dengan variasi 3 ketebalan pelat dibawah ketebalan semula, dengan mengikuti ketebalan pelat setandar pesawat. Standar variasi eksperimen ditentukan berdasarkan

DOE (*Design of Experiment*) Taguchi. Berikut ini factor dan level ketebalan pelat yang digunakan dalam DOE.

Iuou	2.1 uktor dun Lever i	JOL Iugu	ciii	
No	Faktor	Keteb	alan pelat	(mm)
		Level 1	Level 2	Level 3
1	LE Rib	0,4	0,5	0,6
2	Main Rib	0,4	0,5	0,6
3	LE Skin	0,6	0,8	1
4	Main Skin	0,5	0,6	0,8
5	Front Spar	0,5	0,6	0,8
6	Rear Spar	0,5	0,6	0,8
7	LE Horn Skin	0,6	0,8	1
8	Main Horn Skin	0,4	0,5	0,6
9	Horn Spar	0,4	0,5	0,6
10	LE Horn Spar	0,4	0,5	0,6
11	Mid Rib Horn	0,4	0,5	0,6
12	Top Support Horn	0,4	0,5	0,6
13	Small Hub	0,4	0,5	0,6

Tabel 2.Faktor dan Level DOE Taguchi

Sumber : Aeropsace Sheet Metal Standard

Level ketebalan pelat ditentukan berdasarkan ketebalan pelat di bawah ketebalan semula dimana pada level 3 merupakan ketebalan pelat awal kemudian diikuti ketebalan pelat di bawahnya pada level 2 dan 3.Dari faktor dan level sesuai tabel 4.6 selanjutnya dilakukan pembuatan DOE Taguchi menggunakan perangkat lunak Minitab 17. Dari hasil perhitungan DOE taguchi menggunakan perangkat lunak Minitab 17 ditentukan matriks othogonal L27 (313) yaitu dengan kombinasi 3 level dan 13 faktor ditentukan pengujian sebanyak 27 kali. Berikut ini Tabel 1. DOE Taguchi yang dihasilkan:

	Matriks Ortogonal L27 (3 ¹³)													
Cycle Design	Cycle DesignLE RibMain SkinLE 													
1	0,4	0,4	0,6	0,5	0,5	0,5	0,6	0,4	0,4	0,4	0,4	0,4	0,4	
2	0,4	0,4	0,6	0,5	0,6	0,6	0,8	0,5	0,5	0,5	0,5	0,5	0,5	
3	0,4	0,4	0,6	0,5	0,8	0,8	1	0,6	0,6	0,6	0,6	0,6	0,6	

Tabel 3.DOE Taguchi

4	0,4	0,5	0,8	0,6	0,5	0,5	0,6	0,5	0,5	0,5	0,6	0,6	0,6
5	0,4	0,5	0,8	0,6	0,6	0,6	0,8	0,6	0,6	0,6	0,4	0,4	0,4
6	0,4	0,5	0,8	0,6	0,8	0,8	1	0,4	0,4	0,4	0,5	0,5	0,5
7	0,4	0,6	1	0,8	0,5	0,5	0,6	0,6	0,6	0,6	0,5	0,5	0,5
8	0,4	0,6	1	0,8	0,6	0,6	0,8	0,4	0,4	0,4	0,6	0,6	0,6
9	0,4	0,6	1	0,8	0,8	0,8	1	0,5	0,5	0,5	0,4	0,4	0,4
10	0,5	0,4	0,8	0,8	0,5	0,6	1	0,4	0,5	0,6	0,4	0,5	0,6
11	0,5	0,4	0,8	0,8	0,6	0,8	0,6	0,5	0,6	0,4	0,5	0,6	0,4
12	0,5	0,4	0,8	0,8	0,8	0,5	0,8	0,6	0,4	0,5	0,6	0,4	0,5
13	0,5	0,5	1	0,5	0,5	0,6	1	0,5	0,6	0,4	0,6	0,4	0,5
14	0,5	0,5	1	0,5	0,6	0,8	0,6	0,6	0,4	0,5	0,4	0,5	0,6
15	0,5	0,5	1	0,5	0,8	0,5	0,8	0,4	0,5	0,6	0,5	0,6	0,4
16	0,5	0,6	0,6	0,6	0,5	0,6	1	0,6	0,4	0,5	0,5	0,6	0,4
17	0,5	0,6	0,6	0,6	0,6	0,8	0,6	0,4	0,5	0,6	0,6	0,4	0,5
18	0,5	0,6	0,6	0,6	0,8	0,5	0,8	0,5	0,6	0,4	0,4	0,5	0,6
19	0,6	0,4	1	0,6	0,5	0,8	0,8	0,4	0,6	0,5	0,4	0,6	0,5
20	0,6	0,4	1	0,6	0,6	0,5	1	0,5	0,4	0,6	0,5	0,4	0,6
21	0,6	0,4	1	0,6	0,8	0,6	0,6	0,6	0,5	0,4	0,6	0,5	0,4
22	0,6	0,5	0,6	0,8	0,5	0,8	0,8	0,5	0,4	0,6	0,6	0,5	0,4
23	0,6	0,5	0,6	0,8	0,6	0,5	1	0,6	0,5	0,4	0,4	0,6	0,5
24	0,6	0,5	0,6	0,8	0,8	0,6	0,6	0,4	0,6	0,5	0,5	0,4	0,6
25	0,6	0,6	0,8	0,5	0,5	0,8	0,8	0,6	0,5	0,4	0,5	0,4	0,6
26	0,6	0,6	0,8	0,5	0,6	0,5	1	0,4	0,6	0,5	0,6	0,5	0,4
27	0,6	0,6	0,8	0,5	0,8	0,6	0,6	0,5	0,4	0,6	0,4	0,6	0,5

Sumber : Hasil Perhitungan

Dari hasil pengujian diatas untuk lebih mempermudah dalam analisa data hasil pengujian maka dibuat tabel dalam penyajian data tersebut. Berikut ini tabel 3. yang merupakan data hasil pengujian struktur rudder pesawat :

TT 1 1 4	D	TT '1	D
Tobal /	1 loto	H001	Donmillion
140514.	12010	114811	ЕСПУПНАН
10001			- on Berlinnin

Design Cycle	<i>Fvm</i> Limit	<i>Fvm</i> Ultimate	Margin of Safety	Fvm Limit	Fvm Ultimate	Margin of Safety	Mass (Kg)	Mass (Ton)
-----------------	---------------------	------------------------	------------------------	--------------	-----------------	------------------------	--------------	---------------

		9609			11436			
1	9,45	14,18	0,898	6,13	9,20	1,926	17,55715	0,01756
2	9,46	14,19	0,896	6,10	9,15	1,940	18,10859	0,01811
3	9,48	14,22	0,892	6,02	9,03	1,979	18,93030	0,01893
4	8,08	12,12	1,219	5,00	7,50	2,587	20,12539	0,02013
5	8,09	12,14	1,217	4,96	7,44	2,616	20,60076	0,02060
6	8,09	12,14	1,217	4,74	7,11	2,783	21,01669	0,02102
7	7,11	10,67	1,522	4,83	7,25	2,713	23,39784	0,02340
8	7,11	10,67	1,522	4,90	7,35	2,660	23,49561	0,02350
9	7,12	10,68	1,519	4,77	7,16	2,760	24,28919	0,02429
10	9,50	14,25	0,888	5,85	8,78	2,066	22,05542	0,02206
11	9,51	14,27	0,886	5,85	8,78	2,066	22,27357	0,02227
12	9,51	14,27	0,886	5,85	8,78	2,066	22,68612	0,02269
13	8,02	12,03	1,236	4,98	7,47	2,601	21,04788	0,02105
14	8,04	12,06	1,231	4,95	7,43	2,623	21,21384	0,02121
15	8,05	12,08	1,228	4,97	7,46	2,608	21,32825	0,02133
16	7,06	10,59	1,540	4,18	6,27	3,290	19,88269	0,01988
17	7,07	10,61	1,537	4,15	6,23	3,321	19,79470	0,01979
18	7,08	10,62	1,533	4,17	6,26	3,301	20,14266	0,02014
19	9,43	14,15	0,902	5,89	8,84	2,045	21,82022	0,02182
20	9,44	14,16	0,900	5,95	8,93	2,014	22,04178	0,02204
21	9,46	14,19	0,896	5,91	8,87	2,034	22,38164	0,02238
22	8,10	12,15	1,214	4,72	7,08	2,799	21,58660	0,02159
23	8,10	12,15	1,214	4,78	7,17	2,752	21,73862	0,02174
24	8,11	12,17	1,211	4,74	7,11	2,783	21,77224	0,02177
25	7,02	10,53	1,555	4,19	6,29	3,280	20,42273	0,02042
26	7,03	10,55	1,551	4,23	6,35	3,240	20,33036	0,02033
27	7,04	10,56	1,547	4,20	6,30	3,270	20,63162	0,02063

Sumber : Hasil Pengujian

Dari hasil pengujian dihasilkan data tegangan maksimum yang ditranformasikan kedalam *margin of* safety. Data ini digunakan untuk mengetahui tingkat keamanan struktur rudder pesawat dalam pengujian berdasarkan kombinasi properties yang berlaku. Selain tegangan maksimum juga

dihasilkan massa benda data ini digunakan untuk menganalisa tingkat pengaruh *level* pada *factor* yang terjadi sehingga dapat dihasilkan kombinasi *level* yang optimum.

C. Analisa Data Hasil Pengujian

Tahap ini merupakan tahap pengolahan data untuk mendapatkan level faktor kombinasi optimum dengan menggunakan karakteristik semakin kecil semakin baik (*smaler is better*).

Perhitngan Rasio S/N

Nilai massa hasil pengujian kemudian ditansformasikan ke dalam bentuk rasio S/N untuk mencari faktor yang berpengaruh terhadap kualitas produk. Rasio S/N yang digunakan dalam penelitian ini adalah dengan karakteristik semakin kecil semakin baik (*smaller is better*), pemilihan karakteristik jenis ini bertujuan untuk mendapatkan nilai massa pada struktur rudder pesawat semakin kecil dengan batasan pada *margin of safety* pada kondisi *ultimate* >0.

Perhitungan karakteristik smaller is better sesuai dengan persamaan berikut ini :

$$S/N = -10 \log \left(\frac{1}{n} \sum_{i=1}^{r} y_r^2\right)$$

	Matriks Ortogonal L27 (3^13)															
Cycle Design	LE Rib	Main Rib	LE Skin	Main Skin	Front Spar	Rear Spar	LE Horn Skin	Main Horn Skin	Horn Spar	LE Horn Spar	Mid Rib Horn	Top Support Horn	Small Hub	Mass (Kg)	Mass (Ton)	S/N Rasio
1	0,4	0,4	0,6	0,5	0,5	0,5	0,6	0,4	0,4	0,4	0,4	0,4	0,4	17,55715	0,01756	35,11092
2	0,4	0,4	0,6	0,5	0,6	0,6	0,8	0,5	0,5	0,5	0,5	0,5	0,5	18,10859	0,01811	34,84231
3	0,4	0,4	0,6	0,5	0,8	0,8	1	0,6	0,6	0,6	0,6	0,6	0,6	18,93030	0,01893	34,45685
4	0,4	0,5	0,8	0,6	0,5	0,5	0,6	0,5	0,5	0,5	0,6	0,6	0,6	20,12539	0,02013	33,92511
5	0,4	0,5	0,8	0,6	0,6	0,6	0,8	0,6	0,6	0,6	0,4	0,4	0,4	20,60076	0,02060	33,72234
6	0,4	0,5	0,8	0,6	0,8	0,8	1	0,4	0,4	0,4	0,5	0,5	0,5	21,01669	0,02102	33,54871
7	0,4	0,6	1	0,8	0,5	0,5	0,6	0,6	0,6	0,6	0,5	0,5	0,5	23,39784	0,02340	32,61648
8	0,4	0,6	1	0,8	0,6	0,6	0,8	0,4	0,4	0,4	0,6	0,6	0,6	23,49561	0,02350	32,58027
9	0,4	0,6	1	0,8	0,8	0,8	1	0,5	0,5	0,5	0,4	0,4	0,4	24,28919	0,02429	32,29174
10	0,5	0,4	0,8	0,8	0,5	0,6	1	0,4	0,5	0,6	0,4	0,5	0,6	22,05542	0,02206	33,12969
11	0,5	0,4	0,8	0,8	0,6	0,8	0,6	0,5	0,6	0,4	0,5	0,6	0,4	22,27357	0,02227	33,04420
12	0,5	0,4	0,8	0,8	0,8	0,5	0,8	0,6	0,4	0,5	0,6	0,4	0,5	22,68612	0,02269	32,88480
13	0,5	0,5	1	0,5	0,5	0,6	1	0,5	0,6	0,4	0,6	0,4	0,5	21,04788	0,02105	33,53583
14	0,5	0,5	1	0,5	0,6	0,8	0,6	0,6	0,4	0,5	0,4	0,5	0,6	21,21384	0,02121	33,46761
15	0,5	0,5	1	0,5	0,8	0,5	0,8	0,4	0,5	0,6	0,5	0,6	0,4	21,32825	0,02133	33,42090
16	0,5	0,6	0,6	0,6	0,5	0,6	1	0,6	0,4	0,5	0,5	0,6	0,4	19,88269	0,01988	34,03050
17	0,5	0,6	0,6	0,6	0,6	0,8	0,6	0,4	0,5	0,6	0,6	0,4	0,5	19,79470	0,01979	34,06902
18	0,5	0,6	0,6	0,6	0,8	0,5	0,8	0,5	0,6	0,4	0,4	0,5	0,6	20,14266	0,02014	33,91766
19	0,6	0,4	1	0,6	0,5	0,8	0,8	0,4	0,6	0,5	0,4	0,6	0,5	21,82022	0,02182	33,22282
20	0,6	0,4	1	0,6	0,6	0,5	1	0,5	0,4	0,6	0,5	0,4	0,6	22,04178	0,02204	33,13507
21	0,6	0,4	1	0,6	0,8	0,6	0,6	0,6	0,5	0,4	0,6	0,5	0,4	22,38164	0,02238	33,00216
22	0,6	0,5	0,6	0,8	0,5	0,8	0,8	0,5	0,4	0,6	0,6	0,5	0,4	21,58660	0,02159	33,31632
23	0,6	0,5	0,6	0,8	0,6	0,5	1	0,6	0,5	0,4	0,4	0,6	0,5	21,73862	0,02174	33,25536
24	0,6	0,5	0,6	0,8	0,8	0,6	0,6	0,4	0,6	0,5	0,5	0,4	0,6	21,77224	0,02177	33,24194
25	0,6	0,6	0,8	0,5	0,5	0,8	0,8	0,6	0,5	0,4	0,5	0,4	0,6	20,42273	0,02042	33,79772
26	0,6	0,6	0,8	0,5	0,6	0,5	1	0,4	0,6	0,5	0,6	0,5	0,4	20,33036	0,02033	33,83710
27	0,6	0,6	0,8	0,5	0,8	0,6	0,6	0,5	0,4	0,6	0,4	0,6	0,5	20,63162	0,02063	33,70933
								Jum	lah							905,11276
								Rata-	rata							33 52269

Tabel 5. Data Hasil Pengujian dengan S/N Rasio

Sumber : Hasil Pengujian

Pengaruh Level terhadap Factor

Tahap ini merupakan tahap perhitungan variabilitas nilai rasio S/N nilai massa hasil pengujian dari masing-masing factor. Untuk mencari variabilitas niai rasio S/N dihitung nilai rata-rata rasio S/N pada setiap faktor dalam satu level. Dengan mengetahui pengaruh level terhadap faktor akan didapatkan level kombinasi yang optimal.

Level	LE Rib	Main Rib	LE Skin	Main Skin	Front Spar	Rear Spar	LE Horn Skin
1	33,67719	33,64765	34,02676	34,01984	33,63171	33,56704	33,57631
2	33,50002	33,49268	33,51100	33,61927	33,55036	33,53271	33,52279
3	33,39087	33,42776	33,03032	32,92898	33,38601	33,46833	33,46898
Delta	0,28632	0,21989	0,99644	1,09086	0,24570	0,09871	0,10733
Rank	3	5	2	1	4	8	6

Tabel 6. Respon Level terhadap Faktor

Laval	Main Horn	Horn	LE Horn	Mid Rib	Top Support	Small
Level	Skin	Spar	Spar	Horn	Horn	Hub
1	33,57348	33,53150	33,53254	33,53639	33,53215	33,53069
2	33,52418	33,52600	33,52710	33,51976	33,51978	33,52052
3	33,47042	33,51058	33,50844	33,51194	33,51615	33,51688
Delta	0,10306	0,02092	0,02410	0,02445	0,01600	0,01381
Rank	7	11	10	9	12	13

Sumber : Hasil Perhitungan

Dari table tersebut kemudian di ambil level faktor yang paling berpengaruh. Untuk memperoleh karakteristik smaller is better, maka kombinasi level faktor optimum dicapai pada nilai rata-rata rasio S/N level faktor tertinggi dari setiap faktor.

Analysis Of Variance (ANOVA)

a. Perhitungan Sum of Square (SS)

• Sum of Square factor

Perhitungan Sum of Square Factor mengikuti persamaan berikut :

$$SS_{A} = \left[\sum_{i=1}^{KA} \left(\frac{A_{i}^{2}}{n_{A_{i}}}\right)\right] - \frac{T^{2}}{N}$$

• Sum of Square (SS) Total

Perhitungan Sum of Square Total mengikuti persamaan beikut:

$$SS_{T} = \sum_{i=1}^{N} y^{2}$$

• Sum of Square (SS) Mean

Perhitungan Sum of Square Mean mengikuti persamaan beikut:

$$SSm = \sum_{i=1}^{N} n \, x \, \bar{y}^2$$

• Sum of Square (SS) Error

Perhitungan Sum of Square Error mengikuti persamaan beikut: $SS_e = SS_T - SS_m - SS_{factor}$

b. Perhitungan Mean of Square (MS)

Perhitungan mean squares dapat dilakukan dengan persamaan beikut:

$$MS_i = \frac{SS_i}{V_i}$$

Untuk mengetahui faktor yang signifikan terhadap Massa Struktur Rudder Pesawat, maka dilakukan penggabungan (*Pooling up*) faktor ke dalam *error*. Penggabungan dilakukan karena nilai dari F hitung tidak diketahui karena *error* bernilai 0, sehingga perlu dilakukan strategi Pooling Up. Penggabungan yang dilakukan dengan faktor yang tidak signifikan yaitu dengan *sum of square* (SS) terkecil menjadi error sehingga untuk perhitungan yang dilakukan sama seperti perhitungan ANOVA yaitu mulai dari *sum of square* hingga F hitung.

c. Perhitungan F-Value

Nilai F hitung didapatka berdasarkan persamaan berikut :

F-Hitung_A
$$= \frac{MS_A}{MS_e}$$

d. Perhitungan Persen Kontribusi

Persen kontribusi merupakan porsi masing-masing faktor dan atau interaksi faktor yang signifikan terhadap total varian yang diamati. Perhitungan perhitungan persen kontribusi dapat dilakukan dengan persamaan beikut:

$$\rho = \frac{SS'_A}{SS_{Faktor}} x \ 100 \ \%$$

Dimana :
$$SS'_A = SS_A - (MS_e x df_A)$$

Berikut ini tabel hasil perhitungan persen kontribusi :

140017.	i ciscii ixu	nulousi					
No	Source Of Varians	Degrees Of Freedom (V)	Sum Of Square (SS)	Mean Of Square (MS)	F-Hitung	ρ(%)	Keputusan
1	LE Rib	2	0,37585	0,18793	407,9038	3,4106	Gagal Tolak H ₀
2	Main Rib	2	0,22974	0,11487	249,3296	2,08146	Gagal Tolak H ₀
3	LE Skin	2	4,4699	2,23495	4851,051	40,6523	Gagal Tolak H ₀
4	Main Skin	2	5,48083	2,74042	5948,192	49,84835	Gagal Tolak H ₀
5	Front Spar	2	0,282	0,141	306,0412	2,5568	Gagal Tolak H ₀
6	Rear Spar	2	0,0452	0,0226	49,0551	0,40279	Gagal Tolak H ₀
7	E Horn Ski	2	0,05184	0,02592	56,25554	0,46314	Gagal Tolak H ₀
8	ain Horn Sk	2	0,04783	0,02391	51,90384	0,42667	Gagal Tolak H ₀
9	Horn Spar	2	0,00212	0,00106	2,29797	0,01088	Tolak H ₀
10	E Horn Spa	2	0,00287	0,00144	3,1198	0,01777	Tolak H ₀
11	lid Rib Hor	2	0,00281	0,0014	3,04504	0,01714	Tolak H ₀
12	o Support H	2	0,00127	0,00063	1,37503	0,00314	Tolak H ₀
13	Small Hub			Ро	oling Up		
Er	ror	2	0,00092	0,00046	-	-	-
To	otal	26	10,99318	-	-	-	-

Tabel 7. Persen Kontribusi

Sumber : Hasil Perhitungan

Pengujian Konfirmasi

a. Prediksi Rasio S/N Hasil Pengujian

Perhitungan interval kepercayaan pada kondisi perlakuan yang diprediksi (CI) dengan level signifikan 95% adalah sesai dengan persamaan sebagai berikut :

$$CI = \sqrt{\frac{F_{\alpha;1;Ve}MS_{e}}{n_{eff}}} Dimana: F_{\alpha;1;Ve} = F 0.05; 1, 2 = 18.51$$

$$Mse = 0,00046$$

$$Neff = \frac{N}{1 + \text{Jumlah derajad kebebasan perkiraan rata-rata}}$$

$$= \frac{27}{1 + 2 + 2 + 2 + 2 + 2 + 2} = 1,42$$

$$CI = \pm \sqrt{\frac{F_{\alpha;1;Ve}MS_{e}}{n_{eff}}} = \pm \sqrt{\frac{18.51 \times 0,00046}{1,42}} = \pm 0,07747$$

$$\mu \text{ prediksi} - CI \leq \mu \leq \mu \text{ prediksi} + CI$$

$$35,06113 - 0,07747 \leq \mu \leq 35,06113 + 0,07747$$

$$34,98366 \leq \mu \leq 35,13860$$

b. Pengujian Konfirmasi

Setelah mendapatkan level faktor kombinasi optimum maka dilakukan pengujian konfirmasi menggunakan perngkat lunak MSC. Patran/Nastran 2012 untuk mendapatkan niai hasil pengujian pada level faktor kombinasi optimum.

Dari hasil analisa struktur rudder pesawat *Design level Factor Optimium* pada *load case 9609* menghasilkan tegangan dan deformasi maksimum sebagai berikut :

• Tegangan maksimum (Fvm)	
Pada kondisi limit	: 9,45 daN/mm ²
Pada kondisi ulitimate	: 9,45 x 1,5 = 14,175 daN/mm^2

• Deformasi Maksimum : 3,62 mm

Dengan *Compressive Yield Stress* (Fcy) Al 2024-T3 = 26,9 daN/mm2, maka margin of safety adalah :

$$Ms = \frac{Fcy}{Fvm} - 1 = \frac{26,9}{14,175} - 1 = 0,898$$

Berdasarkan nilai Magin of Safety *Design level Factor Optimium Load Case* 9609 dinyatakan aman karena 0,898 > 0.

Tegangan dan deformasi maksimum struktur rudder pesawat *Design level Factor Optimium* pada *load case 9609* dapat dilihat pada gambar 5. di bawah ini:

10	
	9.45+000
	8.82+000
	8.19+000
	7.56+000
	6.93+000
	6.30+000
	5.67+000
	5.04+000
	4.41+000
	3.79+000
	3.16+000
	2.53+000
	1.90+000
	1.27+000
	6.40-001 1.08-002
Ž×	default_Fringe : Max 9.45+000 @Nd 312334 Min 1.08-002 @Nd 315237
10 Dector	default_Deformation : Max 3.62+000 @Nd 31549

Gambar 5. Load case 9609 Design level Factor Optimium (Hasil Pengujian)

Dari hasil analisa struktur rudder pesawat *Design level Factor Optimium* pada *load case* 11436 menghasilkan tegangan dan deformasi maksimum sebagai berikut :

)	Tegangan maksimum (Fvm) Pada kondisi limit	: 6,13 daN/mm ²
	Pada kondisi ulitimate	: 6,13 x 1,5 = 9,2 daN/mm ²

• Deformasi Maksimum : 5,27 mm

Dengan *Compressive Yield Stress* (Fcy) Al 2024-T3 = 26,9 daN/mm², maka *margin of safety* adalah :

$$Ms = \frac{Fcy}{Fvm} - 1 = \frac{26,9}{9,2} - 1 = 1,93$$

Berdasarkan nilai Magin of Safety *Design level Factor Optimium Load Case* 11436 dinyatakan aman karena 1,93 > 0.

Tegangan dan deformasi maksimum struktur rudder pesawat *Design level Factor Optimium* pada *load case* 11436 dapat dilihat pada gambar 6. berikut ini :

Gambar 6. Load case 11436 Design Level Factor Optimum (Hasil Pengujian)

Dengan menggunakan propeties seperti yang telah ditentukan untuk *Design level Factor Optimium* menghasilkan massa struktur 17,55715 Kg.

Setelah melakukan pengujian konfirmasai maka dilakukan perhitungan interval kepercayaan untuk eksperimen konfirmasi sesuai dengan persamaan 2.10 adalah sebagai berikut :

CI =
$$\sqrt{F_{\alpha;1;Ve}MS_e\left[\left(\frac{1}{n_{eff}}\right) + \left(\frac{1}{r}\right)\right]}$$
 Dimana : $F_{\alpha;1;Ve} = F_{0.05;1,2} = 18,51$

MSe = 0,00046

r = Jumlah eksperimen konfirmasi = 1

CI = $\pm \sqrt{18,51 \times 0,00}$	$046\left[\frac{1}{1,42} + \frac{1}{1}\right] = \pm 0,12054$
μ konfirmasi – CI	$\leq \mu \leq \mu$ konfirmasi + CI
35,11092 - 0,12054	$\leq \mu \leq 35,11092 + 0,12054$
34,99038	$\leq \mu \leq$ 35,23146

Dari hasil perhitungan interval kepecayaan dapat disimpulkan bahwa pengujian konvirmasi dapat diterima karena nterval kepercayaan pengujian prediksi pberirisan dengan interval kepercayaan konfirmasi seperti yang tercantum pada grafik dibawah ini.

Gambar 7. Grafik Perbandingan Interval Kepercayaan (Hasil Perhitungan)

Persentase Penurunan Massa Struktur Rudder Persawat

Dari hasil optimasi struktur rudder pesawat maka dapat dihitung presentase penurunan massa yang terjadi antara *Design Initial* dan *Design level Factor Optimum*.

Berikut ini perhitungan presentase penurunan massa antara *Design Initial* dan *Design level Factor Optimum* :

%

 $=rac{ ext{Massa Design Initial-Massa Design level Factor Optimum}}{ ext{Massa Design Initial}} \ x\ 100\%$

= 29,9 %

Dari hasil perhitungan diatas diapat diartikan bahwa massa pada *Design Initial* dapat diturunkan sebesar 29,9 %.

4. KESIMPULAN

Dari hasil penelitian ini dapat disimpulkan bahwa

- 1. Kombinasi ketebalan pelat struktur rudder pesawat optimum adalah :
- Faktor Signifikan Terhadap Respon
- a. LE Rib : 0,4 mm
- b. Main Rib : 0,4 mm
- c. LE Skin : 0,6 mm
- d. Main Skin : 0,5 mm

- e. Front Spar : 0,5 mm
- f. Rear Spar : 0,5 mm
- g. LE Horn Skin : 0,6 mm
- h. Main Horn Skin : 0,4 mm

Faktor Tidak Signifikan Terhadap Respon

- i. Horn Spar : 0,4 mm
- j. LE Horn Spar : 0,4 mm
- k. Mid Rib Horn : 0,4 mm
- l. Top Support Horn : 0,4 mm
- m. Small Hub : 0,4 mm

2. Massa desain awal struktur rudder sebelum mengalami optimasi adalah 25,0481 kg dan massa desain struktur rudder setelah mengalami optimasi adalah 17,55715 kg sehingga dapat diketahui penurunan massa struktur rudder sebesar 7,49095 kg dengan presentase penurunan massa rudder sebesar 29,9%.

: 7,09 daN/mm²

- 3. Desain inisial struktur rudder pesawat mengalami tegangan maksimum sebesar:
- A. Load case 9609
 - Pada kondisi limit
 - Pada kondisi ulitimate : 10,6 daN/mm²
 - : 1,53
- Margin of safety B. Load case 11436
 - Pada kondisi limit : 4,09 daN/mm²
 - Pada kondisi ulitimate : 6,14 daN/mm²
 - Margin of safety : 3,38
- 4. Desain optimum struktur rudder pesawat mengalami tegangan maksimum sebesar :
- A. Load Case 9609
 - pada kondisi limit : 9,45 daN/mm2
 - pada kondisi ulitimate : 14,175 daN/mm2
 - Margin of safety : 0,898
- B. *Load Case* 11436
 - Pada kondisi limit : 6,13 daN/mm2
 - Pada kondisi ulitimate : 9,2 daN/mm2
 - Margin of safety : 1,93

5. DAFTAR PUSTAKA

Crocker, D. (2007) Dictionary of Aviation. London: A&C Black Publishers Ltd.

U.S. Departement of Defence (2003) *Metalic Material and Elements for Aerospace Vehicle Structures*. Virginia: Federal Aviation Administration.

Holzleitnera, L. and Mahmoud, K. (1999) 'Structural Shape Optimization Using MSC/NASTRAN and Sequential Quadratic Programming', Elsevier Science Ltd, 487(514).

Logan, D. L. (2007) A First Course in the Finite Element Method. Fourth. Canada: Thomson Learning.

MSC Nastran 2012 Getting Started User's Guide (2012). Available at: https://simcompanion.mscsoftware.com.

Nagaraj, R. H. and Borkar, V. H. (2016) 'Weight Optimization of the Vertical Tail in-Board Box Through Stress Analysis Approach', International Journal for Scientific Research & Development, 13(3).

Niu, M. C. Y. (1999) Airfarame Stress Analysis and Sizing. Second. Hong Kong: Hon Kong Konmilit Press Ltd.

Ribke, J. and Schwarmann (2007) Handbuch Structure Berechnung. AIRBUS, IASB.

Soejanto, I. (2009) Desain Eksperimen dengan Metode Taguchi. Edisi Pertama. Yogyakarta: Graha Ilmu.

U.S. Departement of Defence (2003) Metalic Maerial and Elements for Aerospace Vehicle Structures. Virginia: Federal Aviation Administration.

U.S. Department of transportation (2012) Aviation Maintenance Tecnical Handbook- Arframe. Vol-1. Oklahoma: Federal Aviation Administration.

Vinayaka, V., Kumar, S. and Reddy, B. (2015) 'Design and Linear Static Analysis of Transport Aircraft Vertical Tail for Different Rudder Deflection (Rotation)', International Journal for Scientific Research & Development, 3(10).

Wanga, W., Guob, S. and Yang, W. (2011) 'Simultaneous Partial Topology and Size Optimization of a Wing Structure Using ant Colony and Gradient Based Methods', Engineering Optimization, 43(4).